Selected contribution: insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle.
نویسندگان
چکیده
Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, resulting in a decrease in phosphorylation of the myosin-bound subunit (MBS(Thr695)) of MBP and in its activation. Treatment of confluent serum-starved VSMCs with insulin prevented thrombin-induced increases in membrane-associated RhoA, Rho kinase activation, and site-specific phosphorylation of MBS(Thr695) of MBP and caused MBP activation. Preexposure to N(G)-monomethyl-L-arginine, a NO synthase inhibitor, and R-p-8-(4-chlorophenylthio)cGMP, a cGMP antagonist, attenuated insulin's inhibitory effect on Rho translocation and restored thrombin-mediated Rho kinase activation and site-specific MBS(Thr695) phosphorylation, resulting in MBP inactivation. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked insulin's inhibitory effects by abolishing thrombin-mediated Rho signaling and promoted dephosphorylation of MBS(Thr695). Furthermore, expression of a dominant-negative RhoA decreased basal as well as thrombin-induced MBS(Thr695) phosphorylation and caused insulin activation of MBP. Collectively, these results indicate that insulin inhibits Rho signaling by decreasing RhoA translocation via the NO/cGMP signaling pathway to cause MBP activation via site-specific dephosphorylation of its regulatory subunit MBS.
منابع مشابه
Diabetes in the Goto-Kakizaki rat is accompanied by impaired insulin-mediated myosin-bound phosphatase activation and vascular smooth muscle cell relaxation.
Our laboratory has demonstrated that insulin rapidly stimulates myosin-bound phosphatase (MBP) activity in vascular smooth muscle cells (VSMCs). In this study, we examined whether diabetes is accompanied by alterations in MBP activation and elucidated the components of the signaling pathway that mediate the effects of diabetes. VSMCs isolated from Goto-Kakizaki (GK) diabetic rats (a model for t...
متن کاملNegative regulation of rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells: role of nitric oxide and cyclic guanosine monophosphate signaling pathways.
Recent studies from our laboratory have shown that insulin induces relaxation of vascular smooth muscle cells (VSMCs) via stimulation of myosin phosphatase and inhibition of Rho kinase activity. In this study, we examined the mechanism whereby insulin inhibits Rho signaling and its impact on actin cytoskeleton organization. Incubation of confluent serum-starved VSMCs with thrombin or phenylephr...
متن کاملRole for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction.
Receptor-induced vascular smooth muscle cell contraction is mediated by dual regulation of myosin light chain (MLC(20)) phosphorylation through Ca(2+)-dependent stimulation of myosin light chain kinase and Rho/Rho-kinase-mediated inhibition of myosin phosphatase. Although myosin light chain kinase regulation is initiated by the coupling of receptors to G proteins of the G(q) family, G(q) and G(...
متن کاملNitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway.
BACKGROUND NO-induced dilations in resistance arteries (RAs) are not associated with decreases in vascular smooth muscle cell Ca2+. We tested whether a cGMP-dependent activation of the smooth muscle myosin light chain phosphatase (MLCP) resulting in a Ca2+ desensitization of the contractile apparatus was the underlying mechanism and whether it could be antagonized by the RhoA pathway. METHODS...
متن کاملCyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle.
The potent vasodilator action of cyclic GMP-dependent protein kinase (cGK) involves decreasing the Ca(2+) sensitivity of contraction of smooth muscle via stimulation of myosin light chain phosphatase through unknown mechanisms (Wu, X., Somlyo, A. V., and Somlyo, A. P. (1996) Biochem. Biophys. Res. Commun. 220, 658-663). Myosin light chain phosphatase activity is controlled by the small GTPase R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2001